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The numbers of n-gons which can meet at every point of uniform periodic planar tessellations are 
limited, viz. 6 triangles, 4 quadrilaterals, and 3 hexagons. 

An investigation is made of infinite periodic surfaces (three-dimensional polyhedra) which have 
the property that tessellations {n, p} can be inscribed on them such that p is greater than the 
maximum values possible for planar tessellations. The work is concerned with polyhedra realizable 
in Euclidean space as opposed to studies of regular tessellations on the hyperbolic plane, and is an 
extension of earlier studies of three-dimensional networks, of which many new examples are 
presented together with a classification of such networks. 

The five regular (Platonic) solids and the set of 
thirteen semi-regular (Archimedean) solids derived 
from them by truncation have been known for a long 
time. (The set of thirteen semi-regular solids reciprocal 
to the Archimedean solids were not listed until this 
was done by Catalan in 1870.) The packing of poly- 
hedra to fill space has been studied by :Fedorov (1904) 
who showed that  only five types of polyhedra fill 
space when similarly oriented and by Andreini (1907), 
who studied the filling of space by semi-regular 
polyhedra alone or in combination with regular 
polyhedra. The edges of the polyhedra in such space- 
fillings form periodic three-dimensional networks, in 
the more symmetrical of which the same number of 
edges meets at each point. These networks, the links 
of which enclose polyhedral cavities, are a special set 
of the infinite family of three-dimensional networks 
of which the primitive, body-centred, and all-face- 
centred cubic lattices of the crystallographer are also 
members, these being respectively 6-, 8-, and 12- 
connected networks if each lattice point is connected 
to its n equidistant neighbours. 

An attempt was made some years ago (Wells, 
1954, 1955, 1956) to derive systematically some of the 
simplest periodic 3- and 4-connected three-dimensional 
networks. Of the 3-connected systems we may dis- 
tinguish as a special group those in which the shortest 
circuit starting from any point and returning to the 
same point is always an n-gon (n 8 or {n, 3} nets). 
Examples of these nets were given in which n has 
the values 7-10 inclusive. The upper limit of n appears 
to be 10, though this has not been proved. These net- 
works were described as representing the extension 
into three dimensions of the series beginning with 
three of the regular solids, those having 3 edges 
meeting at each vertex, namely the tetrahedron 
{3, 3}, the cube {4, 3}, and the pentagonal dodeca- 
hedron {5, 3}. The next member is the plane net 
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{6, 3}, and higher members are periodic three-dimen- 
sional 3-connected networks. 

In these networks we were concerned with the 
edges of the regular polyhedra. There is obviously a 
complementary problem relating to the regular solids 
which are the reciprocals of those already mentioned, 
this being concerned with the faces of the polyhedra. 
The tetrahedron, octahedron, and icosahedron have 
respectively 3, 4, and 5 equilateral triangular faces 
meeting at each vertex. The next member of this 
series is the plane net {3, 6} in which 6 triangles meet 
at each point. We now enquire what is the nature 
of the surfaces on which we may draw tessellations 
having more than six equilateral triangles meeting at 
each point. On a sphere or Euclidean plane an equi- 
lateral triangle is also equiangular, the angle being 
60 ° for the plane triangle and greater than 60 ° on a 
sphere. On the hyperbolic plane the equilateral 
triangle has three equal angles of less than 60 ° and 
studies have been made of tessellations {3, p} having 
p >  6 on this plane, which is only partly realizable 
in Euclidean space (see, for example, Coxeter & Moser, 
1957). We are concerned here with systems realizable 
in Euclidean space and shall show that  tessellations 
{3, p} with p > 6 are possible for triangles which are 
equilateral in the literal but limited sense of having 
equal sides but not equal angles, the sides being 
geodesics on surfaces of varying curvature. 

These surfaces are periodic in 2 or 3 dimensions 
and may be described as infinite polyhedra. They may 
be derived from 2- or 3-dimensional networks, in which 
3 or more links meet at every point, by inflating the 
links until they become tunnels and then inscribing 
the tessellation of triangles or other polygons on the 
surface so formed. (Examples of symmetrical 3-dimen- 
sional frameworks are shown in Fig. 1.) In Fig. 12, 
for example, the basic framework is the diamond 
network (Fig. l(c)), and surfaces based on 6-tunnel 
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Fig. 1. Three-dimensional  ne tworks :  (a) and  (b) 3-connected,  (c) and  (d), 4-connected,  (e) 5-connected, and (f) 6-connected.  

units may be visualized by placing spheres at the 
points of a primitive lattice (Fig. l ( f ) )  and joining 
them by tunnels along the cell edges. The tessellations 

on these 3-dimensional surfaces have the property 
that  the number of n-gons which may meet at every 
point is greater than for a plane surface. 
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Table 1 

P 

3 4 5 6 7 8 

3 t o 

4 c 4,4 [ 
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9 10 

i 3,6 three-dimensional 
triangulated polyhedra 

6 6,3 

7 

lO 

The triangulated polyhedra form only one group 
of a much larger family. Thus, passing from the cube 
(4,3} through the plane net (4, 4} we come to a 
family of polyhedra having more than four 4-gons 
meeting at each point, and similarly for higher 
polygons. I t  would appear tha t  we are studying the 
region below and to the right of the heavy line in 
Table 1, which includes the regular solids (at the top 
left-hand corner) and the three regular plane nets, 
{3, 6}, (4, 4}, and (6, 3}. Here n is the number of 
sides of the polygons of which p meet at each point. 
The three-dimensional (n, 3} nets occupy the lower 
part of the first column of Table 1 and the triangulated 
polyhedra the right-hand part  of the top row. In 
fact we shall see shortly that  a diagram of this type 
is inadequate. 

In the case of a triangulated polyhedron the surface 
is obvious, but as n increases it becomes increasingly 
difficult to distinguish the surface. I t  is indeed rather 
artificial to consider such systems as polyhedra at all; 
they are best described as networks. For this reason, 
and also because we wish to include all three-dimen- 
sional networks in one scheme, we shall exclude all 
{n, p} in which there are circuits smaller than n-gons, 
for example, two of the three three-dimensional 

regular skew polyhedra of Coxeter (1937), namely, 
his (6, 4/4} and (6, 6/3} ((B) and (C) in  Fig. 2). 

N o m e n c l a t u r e  

In the Schl~fli symbol (n, p} for a polyhedron or 
plane net p may be defined as either the number of 
n-gons or the number of links meeting at a point 
(the 'connectedness' of the net). The two numbers 
are the same because each edge of a polyhedron is 
common to two polygons only. In a three-dimensional 
net a link may be common to more than two n-gons 
and it becomes necessary to distinguish between the 
number of polygons and the number of links meeting 
at a point. We retain p for the latter number. 

A three-dimensional net may be more completely 
described by giving the values of x and/or y, x being 
the number of n-gons meeting at each point and y 
the number of n-gons to which each edge is common. 
(Only in the most symmetrical nets is x the same for 
all points and y the same for all links.) For polyhedra 
and plane nets x = p  and y - - 2 ,  but for three-dimen- 
sional nets x and y may have higher values. For 
example, for the cubic (10, 3} net of Fig. l(a), x =  15 
and y - - lO ,  these numbers being related by the 
relation p = 2x/y (Appendix). 

We shall begin by considering the nature of the 
polyhedral surfaces on which p n-gons meet at each 
point. Since the surfaces join up around tunnels 
further polygons are formed around the tunnels 
additional to those we inscribe on the surface. As 
already noted we exclude cases where these new 
polygons have fewer than n sides. If further n-gons 
arise around the tunnels then y > 2, and in (n, p} the 
number of n-gons meeting at a point is greater than p. 
If the polygons around the tunnels are all larger than 
n-gons then y = 2  as for polyhedra and plane nets, 
and the number of n-gons meeting at a point is p. 

A g e n e r a l  c l a s s i f i c a t i o n  of  t h r e e - d i m e n s i o n a l  
n e t w o r k s  

I t  is now evident that  we may place all periodic 
three-dimensional networks on a diagram in which 
we plot along three axes n, p, and either y or x, as 

Fig. 2. The thr~-dimensional regular skew polyhedra of Coxeter: (A) (4, 6/4}, (B) {6, 4/4}, and (C) {6, 6/3}. 
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in Fig. 3. In  the base are found the regular solids, 
the regular plane nets, and those three-dimensional 
nets having y = 2 .  Nets with higher values of y lie 
on higher levels, for example, the cubic {10, 3} net. 
If we choose to give mean values of y for nets in 
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: Fig. l(a) 
: y=lO 

diamond !, Fig. l(b) 
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Fig. 3. A classification of nets. 
The let ters  a - n  represent  the  following nets:  

a {3, 7} Fig. 7 
b {3, 7} Fig. 6(c) 
c {3, S} Fig. 10(a) 
d {3, 8} Fig. 15 
e {3, 8} Fig. 17 
f {4, 5} Fig. 21(d) 

h {7, 3} reciprocal of b 
i {8, 3} Fig. 26 (reciprocal of k) 
3" {3, 8} Fig. 16; y = 2 ~  
k {3, S} Fig. 13; Y=2¼ 
1 {3, 8} Fig. 18; y=2~ 
m{3, 8} Fig. 12; y=2~ 

g {7, 3} reciprocal  of a n {3, 8} Fig. 11; y = 2 ~  

which all the links are not equivalent then such nets 
may  be represented by points between the planes of 
Fig. 3; they  may have non-integral values of y. 
Examples of such nets include the {3, 8} nets j - n  
of Fig. 3 with values of y between 2 and 3. 

Reciprocal  pairs  of nets  

Of the regular solids the tetrahedron is reciprocal 
to itself, the cube to the octahedron, and the regular 
dodecahedron to the icosahedron. I t  has proved 

useful to derive reciprocals of tr iangular tessellations 
since some of these are new 3-connected nets. The 
links of the reciprocal net  connect a point within 
each triangle to points within the three neighbouring 
triangles tha t  share edges with the first. In  the 
reciprocal of {3, p} the surface tessellation of triangles 
is replaced by a 3-connected net  of p-gons, but  there 
are additional polygons the sizes of which depend on 
the numbers (c) of triangles in the closed circuits of 
triangles tha t  are joined through common edges 
around the tunnels of the original polyhedron {3, p}. 
Three cases arise: 

c > p: reciprocal is a true in, 3} net with no circuits 
smaller than n-gons, and it  has y = 2  for all 
links ; 

c = p: reciprocal is a true in, 3} net but  with y > 2 
for some or all of the links; 

c<p:  reciprocal has circuits smaller than n-gons 
and is therefore not a in, 3} net. 

Nets of the first group are the closest three-dimensional 
analogues of the regular solids; examples are included 
in Fig. 3. 

Derivat ion of t h r e e - d i m e n s i o n a l  polyhedra 

Since the surface of one of these polyhedra repeats 
periodically in three dimensions it  is necessary only 
to consider the nature of the repeating unit, and it  is 
convenient to note here what we mean by 'repeat 
unit ' .  In  any three-dimensional pa t te rn  the t rue 
repeat unit  is tha t  portion which produces the pa t te rn  
when repeated, in the same orientation, at the points 
of one of the fourteen Bravais lattices. This (crystallo- 
graphic) repeat unit must  be distinguished from the 
topological repeat unit. For example, in the plane 
{6, 3} net all points are topologically equivalent 
and the repeat unit is a single point with three 'half- 
bonds', as indicated by the heavy lines in Fig. 4(a). 

(b) 

(o) (c) 

Fig. 4. Repeat units in nets. 

The crystallographic repeat unit  is, however, the 
system of two points enclosed within the unit  cell 
(dotted lines). I t  must  have at least four free links 
to connect with four other units to form an infinite 
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two-dimensional pattern.  In a three-dimensional sys- 
tem the crystallographic repeat unit  must  link up 
with six other identical units so that ,  for example, 
in 3- and 4-connected nets it  must  consist of a 
minimum of four 3-connected or two 4-connected 
points, as shown in Fig. 4(b) and (c). Therefore if the 
topological repeat unit  is basically a 3-, 4-, or 5- 
connected unit, as in the 3-, 4-, and 5-tunnel polyhedra 
described later, the crystallographic repeat unit  must 
be a multiple of the topological repeat unit. Even 
if the topological repeat unit  is 6-connected (or more 
highly connected) the crystallographic repeat unit  
may be larger since it  may  not be possible to join 
together the topological repeat units in the same 
orientation. This is t rue of the 6-tunnel {3, 8} of 
Fig. 10(b). In what follows the term repeat unit  
normally means the topological repeat unit. 

i 

/+ ~ \ 

. . . .  . .  " I s - 

Fig. 5. Derivation of three-dimensional polyhedra 
(see text). 

The number of points Z in the repeat unit  of the 
tessellation {n, p} is related to n, p, and the number 
(t) of tunnels connecting each unit  to its neighbours. 
A (topological) repeat unit  may  be dissected out of 
the infinite polyhedron by cutting around each tunnel 
along links of the tessellation so as to give a polyhedral 
unit  with t faces (holes) representing the tunnels, 
as shown in :Fig. 5 for a 6-turmel unit. To this finite 
(simply-connected) polyhedron we may apply Euler 's  
relation: N 0 -  N1 + N2 = 2, where No, N1, and N2 are 
the numbers of its vertices, edges and faces. The 
values of /V'o, /v'l, and N2 are all different from the 
corresponding quantities for the repeat unit  of the 
infinite polyhedral surface, the values for which may 
be wri t ten Z, E, and F.  Clearly, N2 = F + t. Since the 
t faces are shared when the units are joined together, 
the corners and edges of these faces count as only 
half-points or half-edges for the repeat unit  but  as 
whole points or edges for the finite polyhedron. 
However, a polygon has the same number of edges as 
corners and therefore the number of shared points 
is the same as the number of shared edges. The excess 
of edges over vertices therefore remains the same for 
both the connected and unconnected units, so tha t  
Z -  E = N 0 -  N1. Hence 

Z - E + F + t = 2 ,  or Z - E + F = 2 - t .  

Since p n-gons meet at  every point of the tessella- 
tion and every n-gon has n vertices, the ratio of 
n-gons to points is p/n, or F=Zp/n .  Since p edges 
meet at  every point and each edge connects two 
points, the ratio of edges to points is p/2, or E = Zp/2. 
Substitution in the modified Euler equation gives 

n ( 2 t - 4 )  
Z =  

( n - 2 ) p - 2 n  " 

Table 2. Polyhedra with 6-tunnel repeat units 

Z 3 

24/(p -- 6) - -  

32/(2p -- 8) --]-- ] 

40/(3p-- 10) 

48/(4p--  12) 

-12  

( X )  

5 6 7 8 9 10 

- -  2 4  0 o  24 12 8 6 

16 8 [ 4 
I 

56/(5p--  14) 

64/(6p--  16) 

L01 20 

¢~ 12 6 

56 - -  

9 72/(7p-- 18) 

l0 S0/(Sp-- 20) 

24 

2O 

For any specified number of tunnels, for example 
t=6  for polyhedra based on the primitive lattice, 
we may  draw up a table showing the values of Z 
for tessellations having p n-gons meeting at  each 
point (Table 2). In  this paper we include only solutions 
having positive, finite, values of Z ~ t. If Z < t  the 
polyhedron of Fig. 5 has fewer corners than faces and 
all the faces correspond to tunnels. The only example 
of an infinite polyhedron with Z < t  tha t  we have 
found, a {3, 12} based on the octahedron, will be 
i l lustrated in Par t  VIII .  (The infinite values cor- 
respond to plane nets and the negative values in 
this particular table are twice the numbers of vertices 
of the Platonic solids.) Values of Z lying to the right 
of the heavy line are less than 6 and/or non-integral 
with the exception of those for {6, 5} and {8, 4}. 
These solutions are excluded because their reciprocals 
have Z<t ,  for a polyhedron is not realizable if its 
reciprocal on the same surface cannot exist. For the 
same reason the table is terminated at  n = l0 for p = 3. 
For a given type  of tessellation {n, p} the value of Z 
for a unit  with 2 t - 2  tunnels is twice tha t  for a unit  
with t tunnels because two adjacent t-tunnel units 
may  be regarded as one (2 t -2) - tunnel  unit. 

The present paper is essentially descriptive. We 
shall give examples of polyhedra with t =  3, 4, 5, 6, 8, 
and 12; we have derived no examples of surfaces 
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Fig. 6. Repeat units for (3, 7} polyhedra. 

Fig. 7. A planar {3, 7} polyhedron• 

with t exceeding 12, which corresponds to the coor- 
dination number for closest packing of equal spheres. 
We do not give further tables of the type of Table 2 
because it is more convenient to deal with these 
polyhedra as families {n, p}. I t  is hoped to comment 
on the topology of these surfaces in a later paper. 

Note that  all the polyhedra of Table 2 and analogous 
tables are not necessarily realizable as networks 
having no polygons smaller than n-gons, since this 
condition was not introduced in deriving the formula 
for Z. 

Examples  of infinite periodic three-dimensional  
polyhedra 

For each family ~n, p} we give a table showing the 
values of Z for the different values of t. In these 
tables * indicates that  there is no solution having 
Z~t  and t indicates that  the value of Z is non- 
integral. A number of the polyhedra are illustrated 
and the figures show either a repeat unit or a larger 

portion of the infinite periodic polyhedron• In order 
to accentuate the surfaces the models for n up to 6 
are constructed of strips of card linked by paper 
fasteners. The edges of the n-gons would be the 
median lines of the strips and the rings of p paper 
fasteners represent the p-connected points. We deal 
systematically only with families having n from 3 to 6, 
and most thoroughly with {3, 8}, but a few examples 
with higher values of n are illustrated in the form 
of wire models as networks reciprocal to certain of 
the triangulated polyhedra. Being built with straight 

Q Q 

o o 
Fig. 8. Portion of the {10, 3} net of Fig. l(b). 

r 

Fig. 9. Polyhedron {3, 7} based on the net of Fig. l(b). 
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Fig. 10. 

Fig. 11. 

Fig. 12. 

Fig. 13. 

Figs. 10-13. Portions of polyhedra {3, 8} (see text). 
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Fig. 10. 

.+ + ...... +. + ~ ++++++++~+ ++ 

+++.++++++ ++ 

Fig. 11. 

J 
+'+- + " - +  +'+ + + ++ i++• +~++ 

Fig. 12. 

.... : -  ~ :'~ j ~ : .  ~ . ~  

++,+ +~+ +~++ I I  ++ 

Fig. 13. 

Figs. 10-13. :Portions of polyhedra {3, 8} (see text). 
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links (of equal length) these wire models are not 
strictly the reciprocals of the corresponding {3, p} 
polyhedra, for the true reciprocals (e.g. Figs. 25 and 26) 
are tessellations of p-gons on the surface (of variable 
curvature) of the original polyhedron. 

The {3, p} family 

This represents the continuation into three dimensions 
of the series starting with {3, 3}, tetrahedron, {3, 4}, 
octahedron, {3,5}, icosahedron, and {3, 6}, plane 
triangular net. 

t 3 4 5 6 8 12 
{3,8}  z 3 6 9 a2 a8 30 

3 coplanar tunnels (Z=3) 

The 3-tunnel unit of Fig. 10(a) builds the polyhe- 
dron based on the {10, 3} net of Fig. l(b). This poly- 
hedron has y=2 .  Another 3-tunnel unit gives the 
polyhedron of Fig. 11 based on the {10, 3} net of 
Fig. l(a). In this polyhedron there are links with 
y=2,  3, and 4, with weighted mean 2~. One ring of 
the reciprocal {8, 3} polyhedron is illustrated in Fig. 25. 

t 3 4 5 6 8 12 
{3,7} Z 6 12 18 24 36 60 

Examples will be given of the 3- and 6-tunnel 
polyhedra. 

3 coplanar tunnels (Z= 6) 

The unit of Fig. 6(a) is enantiomorphic. Units of 
the same kind (d- or 1-) join up to form the plane net 
{6, 3} (Fig. 7), the simplest two-dimensional 3-con- 
nected net. (In the unit cell of the polyhedron there 
are 12 points, since there are two points in the unit 
cell of {6, 3}.) By combining d- and /-units three- 
dimensional systems arise, of which the simplest is 
based on the {10, 3} net of Fig. l(b). This arises f rom 
rows of d-units as shown in Fig. 8 which are joined 
at the points a to similar rows of 1-units in planes 
perpendicular to that  of the paper. I t  is illustrated in 
Fig. 9. In a net built of d- and/-uni ts  the repeat unit 
is the combination (d-+l-), that  is, it is a 4-tunael 
unit having in the present case Z =  12. In this con- 
nexion see also the {4, 7} 8-tunnel polyhedron. 

The second {3, 7} 3-tunnel unit of Fig. 6(b) forms 
a rather distorted version of the {10, 3} net of Fig. 1 (a). 

6 octahedral tunnels (Z = 24) 

The 6-tunnel unit of Fig. 6(c) joins up directly 
if placed at the points of a primitive lattice. A small 
twist is required at each tunnel if the unit is con- 
structed with equilateral triangles. 

4 tetrahedral tunnels (Z= 6) 

Two tetrahedral units have been constructed. The 
first builds the polyhedron of Fig. 12 based on the 
diamond net. There are 3-gons around the tunnels 
(in addition to those on the surface) so that  for 
one-half of the links y = 3 ;  for the remainder y = 2 ,  
mean y=2½. The reciprocal has 6-gon in addition to 
8-gon circuits and is therefore not an {8, 3} net. The 
second unit (Fig. 13) also builds, with some distortion, 
a diamond-type polyhedron, for which y (mean)= 2 t. 
A portion of the reciprocal {8, 3} net is illustrated 
in Fig. 26. 

4 coplanar tunnels (Z= 6) 

The simplest possibility here is the formation of the 
plane {4, 4} net. This requires that  the tunnels from 
adjacent units all lie in the same plane (Fig. 14(a)). 
If adjacent repeat units are related by a rotation 
through 90 ° then every point is surrounded as in 
Fig. 14(b). 

Fig. 14. Relation of adjacent units in 4-tunnel systems. 

The three-dimensional polyhedron has the form 
of the 4-connected net of Fig. l(d). This (body-centred) 

Fig. 15. Polyhedron {3, 8} based on the net of Fig. l(d). 
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Fig. 16. Polyhedron {3, 8} based on the net of Fig. l(e). 

net has 6 points in the unit cell so that  the unit cell 
of the polyhedron (Fig. 15) contains 36 8-connected 
points. Around the tunnels the shortest circuits of 
points form 4-gons, i.e. y=2.  The shortest circuit of 
triangles around the tunnels is one of 8 triangles. 
The reciprocal (Fig. 27) is therefore a true {8, 3} net 
having no circuits smaller than 8-gons. 

5 tunnels (Z--9) 
The five tunnels are not equivalent, there being 

three in one plane which link the units into a {6, 3} 

net and two perpendicular to this plane linking 
together the sheets, as in Fig. l(e). The polyhedron 
is illustrated in Fig. 16. For all except 3 of the 36 
links in the repeat unit y = 2  (for the others y--3), 
so that  the mean y=2~ .  

6 tunnels (Z = 12) 

The unit of Fig. 10(b), in which all six tunnels are 
similarly constructed, can be placed at the points 
of the primitive cubic lattice and forms a polyhedron 
closely related to the packing of truncated octahedra 

( 
! 

! 

s f 

f 

! 
! 

l 
\ 

... 

Fig. 17. Open packing of truncated octahedra and cubes. 
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Fig. 18. 8-tunnel repeat unit  {3, 8}. 

Fig. 19. 12-tunnel repeat unit  (3, 8}. 

and cubes shown in Fig. 17. For this polyhedron y = 2. 
The reciprocal is i l lustrated in Fig. 28. 

The second 6-tunnel unit  (Fig. 10(c)) has only 
tetragonal symmetry,  the two polar tunnels being 
larger than the four equatorial ones. The reciprocal 
{8, 3} net is shown in Fig. 29. 

8 tunnels (Z= 18) 
The 8-tunnel unit  of Fig. 18 links up to form a 

polyhedron based on the body-centred cubic lattice. 
Of the 72 links in the repeat unit  52 have y--2 ,  
16 have y--3, and 4 have y--4 ,  so tha t  the mean 
y=2½. The reciprocal {8, 3} is i l lustrated in Fig. 30. 

12 tunnels (Z=30)  
A 12-tunnel unit  is i l lustrated in Fig. 19. 

t 3 4 5 6 8 12 
{3 ,9}  z * 4 6 s 12 20 

A 6-tunnel unit  is i l lustrated in Fig. 20(a). The 
reciprocal {9, 3} net is i l lustrated in Fig. 31. 

t 3 4 5 6 8 12 
,~o, 10} z *t  * *t  6 9 15 

The 6-tunnel unit  is i l lustrated in Fig. 20(b). 
Calculation of Z for systems (3, 11} shows that  

Z =  12 for t--12. Although it  seems unlikely tha t  this 
system could be realized we note it  here since we 
include all polyhedra with Z ~ t. For all polyhedra 
(3, 12} Z = t - 2 .  We have already referred to one of 
this type  as the only example we have found of a 
polyhedron having Z < t. 

The (4, p} family 
This family star ts  with the cube, {4, 3}, which is 
followed by the plane net {4, 4}. All higher members 
are polyhedra based on 2- or 3-dimensional nets. 

t 3 4 5 6 8 12 
~ ' ° ~  z 4 s ,2  16 24 40 

The 4-tunnel unit, with Z--8 ,  of which two are shown 
in Fig. 21(a), joins up to form either a planar or a 
three-dimensional system. In  the former case the basic 
net  is the simple (4, 4} net, whereas in the lat ter  case 
adjacent units are turned through 90 ° and the basic 
net  is the 4-connected net of Fig. l(d). Fig. 21(b) 
shows a second 4-tunnel unit. 
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• . . .  ° 

B 
Fig. 20. 

r 

B 

Fig. 21. 

• :: : C 
2. 

: ~: i ̧̧  

Fig. 22. 

Fig. 23. 
Figs. 20-23. Repeat units of polyhedra (see text). 

6-tunnel and 8-tunnel units are i l lustrated in Fig. 
21(c) and (d). 

t 3 4 5 6 8 12 
{4, 6} Z * 4 6 8 12 20 

I t  is interesting tha t  the values of Z for this group 
are the numbers of vertices of the regular solids, 
as in the case of {3, 9}. Two 6-tunnel units are illus- 
t ra ted in Fig. 22; the links of Fig. 22(a), which is 
Coxeter's {4, 6/4}, correspond to the primitive lattice. 

t 3 4 5 6 8 12 
{4,7} z *t *t t *t 8 t 

There is only one solution in this, the last member 
of the (4, p} family. Fig. 22(c) illustrates one form 
of the 8-tunnel unit. The top half is the mirror image 
of the lower half. (If a polyhedron were built  of 
units of which the two halves were both left- or both 
r ight-handed the uni t  would then be a 5-tunnel 
unit  which would have Z = 4  (i.e. Z<t) ) .  

In  {4, 8} Z = t - 2  throughout,  so tha t  none is 
realizable with Z ~ t .  

The {5, p} family 

The first  member is the pentagonal dodecahedron, 
(5, 3}. There is no plane net with an integral value 
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of p b u t  there  is the  m i x e d  ne t  {5, ~}. The  m e m b e r s  
f rom {5, 4} onwards  are t h r ee -d imens iona l  po lyhedra .  
There  are on ly  two classes in  th is  f ami ly ,  {5, 4} 
a n d  {5, 5}. 

t 3 4 5 6 8 12 f ~  A~  

~ ' ~  Z 5 10 15 20 30 50 

Members  of th i s  f a m i l y  are 4-cormected nets  bu i l t  of 

A B A : B 

Fig. 24. Repeat units of polyhedra: (a) {5, 5}, (b) {6, 4}. 

Fig. 25. One 10-ring of {8, 3} reciprocal to {3, 8} of Fig. l l .  

f 

Fig. 26. Portion of {8, 3} reciprocal to polyhedron {3, 8} built of the unit of Fig. 13. 

Fig. 27. {8, 3} reciprocal to the {3, 8} of Fig. 15. 
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Fig. 28. {8, 3} reciprocal to the polyhedron built of the unit  of Fig. 10(b). 

Fig. 29. {8, 3} reciprocal to the polyhedron built  of the unit of Fig. 10(c). 

Fig. 30. {8, 3} reciprocal to the polyhedron built  of the unit  of Fig. 18. 

/ ! 

Fig. 31. {9, 3} reciprocal to the polyhedron built  of the unit  of Fig. 20(a). 
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pentagons, tha t  is, they are intermediate between the 
plane net {4, 4} and the diamond net {6, 4 }  In Fig. 23 
we illustrate (a) a pair of 4-tunnel units which form 
the polyhedron based on the net of Fig. l(d), and 
(b) an 8-tunnel unit  which forms a polyhedron based 
on the body-centred cubic lattice. These two units 
are the reciprocals of the {4, 5} units of Fig. 21(b) 
and (d). 

t 3 4 5 6 8 12 
~o,o] Z * 4 6 8 12 20 

This class, with the same numerical values of Z as 
{3, 9} and {4, 6}, is of special interest as a continuation 
of the series: {3, 3}, tetrahedron, and {4, 4}, plane net. 
The reciprocal of any polyhedron in this class is 
identical with the original polyhedron. The 4-tunnel 
{5, 5} is i l lustrated in Fig. 24(a). 

The {6, p} fami ly  

This family represents the continuation into three 
dimensions of the series start ing with the plane {6, 3} 
net. There are two classes only. 

t 3 4 5 6 8 12 
{6 ,4}  z 3 6 9 12 i s  30 

The values of Z are the same as for {3, 8}. Fig. 24(b) 
shows the 6-tunnel unit  which is the reciprocal of 
the 6-tunnel {4, 6} of Fig. 22(b). Another 6-tunnel 
unit, the reciprocal of tha t  of Fig. 22(a), is the skew 
polyhedron {6, 4/4} of Coxeter which is not admissible 
as a {6, 4} net because it  contains 4-gon circuits. 

t 3 4 5 6 8 12 
{6 ,5}  z • • 6 9 a5 

The values of Z are the same as for {3, 10}. I t  has 
not yet  been possible to find a polyhedron of this 
class which has no polygons smaller than 6-gons. 

S o m e  new 3-connected nets 

The reciprocals of t r iangulated polyhedra are 3- 
connected nets. We list in Table 3 the values of Z 
for different value~ of n and t. Unlik0 the 8-connected 

Table 3. Possible types of {n, 3} nets 
Values of Z 

N u m b e r  of tunnels  (t) 

n 3 4 5 6 8 12 

7 14 28 42 56 84 140 
8 8 16 24 32 48 80 
9 12 18 24 36 60 

10 15 20 30 50 
11 44? 

nets derived in earlier papers some of these new nets 
have y--2.  These are therefore the closest analogues 
in three dimensions of the 3-connected regular solids 
and plane net {6, 3}. A particularly interesting new 
type of 3-connected net arises from the t r iangulated 
polyhedra built from 3-tumlel units. For example, 
the {3, 8} polyhedron of Fig. 11 is based on the cubic 
{10, 3} net. The reciprocal {8, 3} net is a 3-connected 
system of octagons the basic framework of which is 
the 3-colmected 10-gon net. This process is analogous 
to the replacement of a 3-cormected point in a plane 
net by a triangle. I t  can presumably not continue 
further because in the reciprocal {8, 3} net, for 
example, the points are no longer equivalent. 

A P P E N D I X  

Relation between x,  y, and p 

In a p-connected net in which the shortest circuits 
are n-gons and all points and edges are equivalent, 
let x n-gons meet at  each point and let each edge 
be common to y n-gons. Then in any n-gon each edge 
counts as 1/y so tha t  the total  number of edges is 
(x/y)m if m is the total  number of n-gons. Since each 
point is common to x n-gons the total  number of 
points is (n/x)m. In a p-connected net the ratio of 
edges to point is p/2, therefore: 

p(n/x)=2(n/y), or p=2x /y .  

For example, in the 3-connected cubic net of Fig. l(a) 
x=15 and y= lO, whence 2x/y=p=3.  

Now suppose tha t  all the points are equivalent 
but  the links are not all equivalent. In any n- ton 
let al edges be shared between yl n-tons, a2 edges 
between y2 n-tons, and so on. Then the total  number 
of edges becomes (.~al/yl)m. The number of points 
is (n/x)m as before, so tha t  

_ _ 2 ra p n _  2•(al/yl) or p = 
x n y 

For example, in the tetragonal {10, 3} net of Fig. 1 (b) 
all points have x =  10 but the links are of two types 

a1= 4, y 1 = 8 ,  
a2--6, y2=6 , 

and any 10-ton has four links of one kind and six 
of the other. The value of •(a/y) is 3/2, consistent 
with p = 3. 

In the text  and in Fig. 3 we give the weighted mean 
value of y for a number of nets having non-equivalent 
links. If the numbers of the different types of link 
in the repeat unit of the net are ql etc. then 

y (mean) -- Xqnyn 
Xqn 

For the tetragonal net just mentioned q~=4, y~=8,  
and q2 = 8, y9 = 6, whence y (mean) = 6§. 
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We are indebted to Dr I . J .  Good for drawing 
our at tention to one of the families of surface tessella- 
tions described in this paper. Realizing tha t  only six 
equilateral triangles can meet at a point on a plane 
surface he investigated the nature of the (curved) 
surface which may be divided into equilateral triangles 
in such a way tha t  eight meet at  every point, and in 
this way derived one of the 6-tunnel {3, 8} polyhedra. 
Special thanks are due to our colleague Mr E. Young 
and his staff for preparing the numerous stereoscopic 
photographs. 
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The Crystal and Molecular Structure of (+)-Hetis ine Hydrobromide* 
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(+)-I-Ietisine hydrobromide,  C20H2703N.HBr, crystallizes in the monoclinic system, 

a=9 .75 ,  b=10.84,  c - -9 .46A,  fl=114°40 ' ,  

the space group being P21 with two molecules per uni t  cell. The structure was solved from a three-dl- 
mensional  Fourier  synthesis based on phases of the contr ibut ion of the b romine  atom. The deter- 
minat ion  of the molecular structure was carried out solely on the empirical formulae, except tha t  
the ni trogen a tom was identified with the help of chemical work on this alkaloid. The absolute con- 
figuration was invest igated by reference to the anomalous dispersion of the Cu K a  radiat ion by 
the Br atom. 

Introduction 

Het i s ine ,  C20H2703£~{, was isolated from Aconitum 
heterophyllum by Jacobs & Craig (1942) and its first 
preliminary structural  investigation by chemical 
methods was undertaken by Jacobs & Huebner (1947). 
I t  was followed by an extensive chemical study, 
which led to the proposal of two structures (Solo & 
Pelletier, 1959; Wiesner & Valenta, 1958), given in 

* Issued as N.R.C. No. 7450. 

:Fig. 1 (a) and (b), neither of which, however, accounted 
satisfactorily for the accumulated evidence. Hetisine 
appeared to have an unusual heptacyclic skeleton, 
capable of a facile and interesting rearrangement. 
In view of this, and the limited amount available for 
chemical study, Dr O. E. Edwards suggested an X-ray 
analysis of the alkaloid. 

The structure shown in :Fig. 1 (c) represents the result 
of this determination. I t  proved valuable in establish- 
ing in detail the stereochemistry of the carbon- 
nitrogen skeleton and in locating all the substituents. 

OH 
HO HO ?CH2 

CH 3 
(~) 

(b) The structural formula of Wiesner & Valenta. 

H2 H O ~ l r ~  CH2 
OH H O ~  

CH2OH CH 3 
(b) (c) 

Fig. 1. (a) The structure of hetisine proposed by Solo & Pelletier. 
(c) I-]etisine proven by the X-ray analysis. 


